
Author’s Copy. Part of High-Performance Graphics 2019 proceedings, and to appear in a Computer Graphics
Forum 2019 special issue.

An Analysis of Region Clustered BVH Volume Rendering on GPU

D. Ganter† and M. Manzke‡

School of Computer Science and Statistics, Trinity College Dublin, Ireland

Figure 1: Example volume rendering of a Flower µCT scan (left) and an indicative heat-map showing the depth-complexity bounding-
volume-hierarchy leaf nodes (right) for one particular transfer function, with early-ray-termination disabled to visualise the geometry.

Abstract
We present a Direct Volume Rendering method that makes use of newly available Nvidia graphics hardware for Bounding
Volume Hierarchies. Using BVHs for DVR has been overlooked in recent research due to build times potentially impeding
interactive rates. We indicate that this is not necessarily the case, especially when a clustering algorithm is applied before the
BVH build to reduce leaf-node complexity. Our results show substantial render time improvements for full-resolution DVR on
GPU in comparison to a recent state-of-the-art approach for empty-space-skipping. Furthermore, the use of a BVH for DVR
allows seamless integration into popular surface-based path-tracing technologies like Nvidia’s OptiX.

CCS Concepts
• Computing methodologies → Computer graphics; Scientific visualization;

1. Introduction

In almost all recent GPU Direct Volume Rendering (DVR) appli-
cations, octrees in some way or form are the prevalent acceleration
data-structures used. There are clear benefits that octrees provide
to DVR; easy-to-implement empty-space-skipping (ESS), clear and
defined volume paging and caching, and trivially sub-sampled data
support are to name but a few. Octrees have long been a natural
acceleration data-structure for volumes on GPU thanks to the clear,
defined and easy to implement subdivision pattern, with predictable
traversal times and well researched algorithms.

† ganterd@scss.tcd.ie
‡ manzkem@scss.tcd.ie

Bounding Volume Hierarchies (BVHs) have also been investi-
gated as a form of acceleration for DVR, however most of this re-
search has been geared toward CPUs rather than GPUs. BVHs are
designed to handle regions of varying size by using Axis-Aligned
Bounding Boxs (AABBs) to spatially group surface data, like poly-
gons. While AABBs transition nicely to the regular grid structure
of volume data, little research has been done on their performance
for volume rendering on GPU. This is partly due to the impression
that BVH build times impede interactive exploration via transfer
function updates. Additionally, it seems wasteful to create a BVH
tree around groups of adjacent active regions that may be consid-
ered dense and thus may as well share a leaf node to reduce build
and traversal complexity. Recent advancements in GPU technology
have provided hardware-based BVH traversal and ray-primitive in-

https://orcid.org/0000-0001-8673-6921
https://orcid.org/0000-0002-2183-8318

D. Ganter & M. Manzke / An Analysis of Region Clustered BVH Volume Rendering on GPU

tersections which has the potential to make the GPU a more viable
candidate for BVH DVR.

In this paper we investigate the characteristics of BVHs on GPU
in terms of render-performance, render-complexity and build times,
and compare against a recent state-of-the-art approach. We present
a method to cluster acceleration structure leaves that has a sig-
nificant impact on render times due to reduced tree and depth-
complexity, with leaf-count reductions of up to 50% in the aver-
age case, improving render times by roughly 10-15%. We propose
that using BVHs on GPU for DVR is now a viable approach and
that tree-build times do not impede interactive exploration and are
in fact one of the lowest costing stages of the pipeline. We finally
show that render times using BVHs can be 20-40% faster than a
state-of-the-art implementation with less deviation from the aver-
age during exploration.

2. Background

Volume rendering, and more specifically DVR, has been a well re-
searched topic in the field of computer graphics. Fundamentally it
is the accumulation of light through a potentially heterogeneous
medium represented as a regular grid of data. This data is re-
sampled as we step along a ray accumulating colour and opac-
ity [Lev88; EHK*06].

CPU volume rendering has also been well researched, but in gen-
eral has been focused more on large-scale volume data [WJA*17;
WUP*18] citing the larger RAM capabilities and removing the
need to transfer data to GPU. Such work has used BVHs to ac-
celerate data traversal [KTW*11; KWN*13; KWN*14]. These ap-
proaches all work well for large data and can scale well to clus-
ters of systems, however in this work we focus on a single CPU -
single GPU system. In this scenario the GPU currently massively
surpasses the CPU in parallelism and is rapidly improving in terms
of memory capacity and bandwidth.

GPU volume rendering has come a long way and a compre-
hensive state of the art report has been presented by Beyer et
al [BHP15]. The works that we find most relevant are Fogal’s
Tuvok renderer [FK10; FSK13], Liu et al [LCDP13] and Had-
wiger et al [HBJP12; HAB*18]. All of these works share a com-
mon theme of some form of hierarchical data-structure. For ex-
ample [FK10; FSK13; LCDP13] use octrees for ESS and data
paging/sampling. [HBJP12] instead use a multi-level hierarchi-
cal data structure to facilitate paging of peta-scale volumes, and
expand upon that work [HAB*18] by using an octree-like oc-
cupancy histogram tree to generate occupancy geometry for ras-
terised ESS traversal. It is clear that octrees have been the data
structure of choice for large scale volume rendering in most rele-
vant works [CNLE09; RV06; LCDP13; FK10; FSK13; HBJP12],
chosen for it’s logarithmic search times and inherent adaptabil-
ity for level-of-detail (LOD) data. However, as recent works make
note [LBG*16; HAB*18], octrees can be more of a hindrance for
dense regions of the volume where overhead is introduced travers-
ing from brick to brick in sparse volumes with potential thin strands
of opaque media.

2.1. Nvidia OptiX & RTX

In terms of actual BVH research, there has been recent work into
hardware acceleration of construction [DTM18], traversal and in-
tersection test [LSL*13], and some of these concepts have fi-
nally been implemented in consumer hardware. With surface path-
tracing being the topic of an immense amount of research, it was
only a matter of time before some of these concepts were in-
troduced as fixed-function hardware. While the OptiX SDK by
Nvidia [PBD*10] has been around for a while now, it has been util-
ising the massive parallel compute power that was already present
in hardware and exposed in CUDA, although hiding the specifics of
the underlying hardware. Only recently has this been accelerated by
implementing some core path-tracing concepts like BVH traversal,
AABB and ray-triangle intersection hardware with the new RTX
line of GPUs.

While octrees may be a more trivially suitable candidate for
DVR, we feel that a proper investigation and evaluation of BVHs in
the context of GPU DVR is now warranted. This means analysing
the traversal characteristics and performance of both octrees and
BVH. For interactive DVR exploration especially, how build times
and traversal change with respect to transfer-function updates are
vitally important to the end-user scenario.

3. Evaluation of BVHs for DVR on GPU

There are many reasons why a BVH approach may be chosen over
a more regular acceleration data-structure such as an octree. For ex-
ample, even if both an octree and a BVH share the same leaf-size in
a sub-divided volume, sparsely populated data may require fewer
inner tree nodes to be traversed to achieve the same amount of
skipped empty space. Secondly, using a BVH allows for the seam-
less integration into existing path-tracing tools, such as Nvidia’s
Optix which can then be used in production renderers for offline
path-tracing when volumetric media needs to be used — clouds
or smoke for example. Following that, by using Optix, much of
the hard work can be accomplished by the existing library, and of-
floaded to hardware accelerated implementations.

However, advantages aside, as discussed previously there has
been little investigation into performance characteristics of BVH
DVR on GPUs. We feel the need to emphasise again that — espe-
cially with new hardware acceleration — an evaluation of BVHs
needs to be performed. In particular, we are interested in two major
parts of the interactive DVR pipeline: transfer function editing and
spatial exploration. In the first example, a user may tweak a transfer
function making certain data less or more visible. When data that
was previously completely transparent becomes visible, this means
that the acceleration data-structure needs to be updated. In the case
of the BVH, this potentially means that a new leaf-node needs to be
added to the scene and the hierarchy needs to be updated. It is this
build time that needs to be evaluated if BVH DVR is to be a viable
candidate.

For the second task — spatial exploration — we need to deter-
mine how BVH traversal handles many potentially transparent re-
gions of volume data that may be redundantly touching (more about
that in section 4) creating additional depth complexity. In a current

D. Ganter & M. Manzke / An Analysis of Region Clustered BVH Volume Rendering on GPU

state-of-the-art approach [HAB*18] rasterisation of occupancy ge-
ometry — which can loosely be thought of as an octree although
the actual geometry skips levels depending on the transfer function
— generates a list of ray-segments which can be traversed in order
to efficiently skip empty space. Because these ray-segments can
be compressed on the fly, continuous regions of active leaves can
compressed into a single ray segment. In comparison to BVH ray-
traversal, exiting one leaf and entering an adjacent leaf can require
a full or partial restart of the BVH search. We evaluate the impact
this has on DVR with both opaque and mostly transparent transfer
functions which generate the same amount of leaves, only differing
in the amount of early terminated rays. In the next section, we also
show how we can mitigate this effect.

4. Region Clustering for BVH

A core contribution of our work is reduction of data structure com-
plexity by spatially clustering active subdivision leaves in the vol-
ume. There are two major advantages that justify this step: Firstly,
BVH construction complexity can be reduced substantially, fa-
cilitating faster refit or rebuild times when the transfer function
changes, although in section 6 we show that BVH build times are
quite fast even without this step.

Secondly — and perhaps more importantly — BVH traversal
complexity can be reduced substantially. By clustering active leaves
in the subdivision we can massively reduce the amount of BVH
leaves, reducing the complexity of the hierarchy and thus ray traver-
sal times, demonstrated in section 6.2. These benefits do however
come at a cost, which is the actual clustering phase which we per-
form on the CPU. We face two major challenges in this task.

4.1. 3D Summed Area Table

The first challenge is the complexity and performance of finding
ideal or close to perfect clustering that minimises the leaf node
count. A simple naive single-pass approach could begin by travers-
ing the bricks in a scanline fashion, attempting to group as many
bricks as possible. While simple and easy to implement, this has
the major drawback of potentially increased fragmentation as the
scanline proceeds, resulting in larger clusters at the beginning of
the scanline and many smaller clusters towards the end. In our so-
lution we use a greedy-like algorithm to attempt to cluster bricks in
descending size using a copy of a vector of booleans representing
the active leaves in the subdivision, coupled with a 3D version of a
summed area table[Cro84] (3DSAT).

The process begins by creating a vector of booleans — or a long
bit string — that represents the active leaves in the subdivision. We
show 2D example of this in figure 2 — labeled ‘active brick mask’.
We then fill a 3DSAT the same dimensions as the subdivision grid
(step 1 in figure 2). If a leaf is active the sum is increased by 1 and
the general process for populating an SAT is used to generate the
3DSAT. When clustering the leaves we query the 3DSAT to deter-
mine if there are the same amount of active leaves as the amount of
leaves that we want to cluster — for example if we are attempting
to cluster a 33 group of leaves, query the 3DSAT for the sum of
all active leaves in an 33 window (step 2 in figure 2). If the result
is exactly 33 we know that all the leaves in the region are active.

1

0 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 1 1 1 0 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0

0 1 1 1 1 1 1 1
0 2 3 4 5 5 5 5
0 2 4 6 8 9 9 9
0 2 5 8 11 13 13 14
0 2 5 9 12 15 16 18
0 2 5 10 14 18 19 22
0 2 5 10 15 19 20 23
0 2 5 10 16 21 22 25

SAT
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Clustered Mask

1-2+1+11=9

All Zero

Active Bricks Mask

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1
0 2 3 4 5 5 5 5
0 2 4 6 8 9 9 9
0 2 5 8 11 13 13 14
0 2 5 9 12 15 16 18
0 2 5 10 14 18 19 22
0 2 5 10 15 19 20 23
0 2 5 10 16 21 22 25

SAT

3

2

Clustered Mask
4

Figure 2: Example of summed-area-table clustering, shown here
in a 2D example attempting to cluster a 3x3 region. This process is
explained in section 4.1.

We also check the 8 corners of the 33 window against the clustered
leaves mask (step 3 in figure 2). If all 8 corners are zero, this re-
gion has not been clustered before. When a region is clustered, the
clustered leaves mask is updated so that all leaves grouped by the
cluster are marked as ‘clustered’ — or 1 — (step 4 in figure 2) and
are therefore not considered in following checks. This sliding win-
dow can be thought of as a form of convolution kernel, albeit in
serial. We outline this process in algorithm 1. It’s important to note
about this algorithm that a copy of the active list of bricks is used.
When a cluster is found, the leaves that are covered by that clus-
ter are marked as inactive in the copied list, effectively acting as a
mask preventing those leaves being added to a different cluster.

4.2. Brick Pool

The second challenge we face lies with the brick pool: What is the
easiest way for the brick pool to handle clustered regions of ESS
information? The short answer is that we decouple the ESS from
the actual DVR sampling. In our solution we take inspiration from
[HBJP12] and [HAB*18], who separate the ESS information from
the actual volume sampling layer. This means that the BVH can
use a fine-grained leaf size and the volume pool can use a brick
size that suits I/O needs or page table complexity, a trait that can
be important in massive-scale DVR. While [HAB*18] use a multi-
level page structure, for our purposes we used a minimised version,
We discuss in more detail about our implementation of brick pool
and page table in section 5.3.

D. Ganter & M. Manzke / An Analysis of Region Clustered BVH Volume Rendering on GPU

Algorithm 1: Greedy algorithm to cluster regions of ESS leaf
nodes. Note that clusterSizeList is in descending order and that
maxClusterSize is a volume size limited, user defined variable.

1 activeList = getActiveLeaves();
2 sat = generateSAT(activeList);
3 clusteredMask = bitmask(activeList.size());
4 clusterSizeList = {maxClusterSize .. 1};
5 clusterList = {};
6 for c in clusterSizeList do
7 area = c * c * c;
8 for z in numLeaves.z - c do
9 for y in numLeaves.y - c do

10 for x in numLeaves.x - c do
11 vec3 min = {x, y, z};
12 vec3 max = min + {c, c, c};
13 if !cornersActive(clusteredMask, min, max)

then
14 continue;
15 end
16 if sat.sumBetween(min, max) == area then
17 clusterList.push(min, max);
18 clusteredMask.setOnes(min, max);
19 end
20 end
21 end
22 end
23 end

5. Implementation

5.1. Occupancy Information & OptiX

Our method begins with generating the occupancy information.
The volume is subdivided into bricks of identical sizes, storing
some information about the brick contents; i.e. min/max value or
a bit-mask of value ranges. In our implementation we just used
min/max values for a brick. This information will be tested against
the transfer function when there is an interaction. This content in-
formation can be saved to disk for future re-use of the volume.

When the transfer function is updated the content information ar-
ray is tested in parallel — using OpenMP in our implementation —
and the active/inactive flags are stored in a bit-mask array. At this
point, if clustering is not enabled, the active/inactive flags can then
be used to generate bounding box information — in this implemen-
tation we use world-space min/max coordinates of each region as
an AABB. This information is stored in a buffer which effectively
represents separate primitives in an OptiX geometry instance.

5.2. Clustering

If clustering is enabled we use the method outlined in section 4
and listed in algorithm 1 to generate a vector of min-leaf-index
to max-leaf-index bounds which is then used to generate AABB
min/max bounds. In our implementation this clustering method is
single-threaded and a potentially naive method of solving the task,

however this should be seen as a proof-of-concept method to ac-
celerate stages later in the BVH DVR pipeline like build times and
ray-traversal in both opaque and transparent volumes. Regardless
of if clustering is enabled or not, the AABB information is stored
in an OptiX buffer and used as geometry primitives in a single ge-
ometry instance that has a single material assigned to it. During
development this was found to be much more performant than a
geometry instance per AABB.

5.3. Brick Pool, Page Table & Sampling

The underlying sampling technique used in both our OptiXDVR
approach and our implementation of SparseLeap [HAB*18] is
a simplified version of Hadwiger et al’s earlier work [HBJP12].
When sampling we perform a look-up into a page table. This look-
up determines if the region that the sample resides is active. This
look-up also gives an offset into a large brick-pool where the ac-
tual volume data resides. As noted in SparseLeap [HAB*18], this
allows the disconnection of ESS and sampling/paging.

Since the efficient sampling of volumes is not the primary fo-
cus of our work relative to empty-space-skipping, our implemen-
tation of this method is simplified by assuming two things. Firstly,
we assume that the volumes are small enough to not use a multi-
level paging technique, and as such just use one page table for the
whole volume. This still allows considerably large volumes to be
visualised. Secondly, we assume that the volume content informa-
tion is known at run-time and there are no ‘unknown’ regions of
the volume. Regardless of whether this is done offline or in a pre-
processing step, we don’t evaluate streaming incomplete data, al-
though the underlying sampling can be updated to facilitate this.

It is important to again stress at this time that the sampling part
of our DVR implementation can be made more complex to accom-
modate the above requirements if needed. This would require few
changes to the BVH ESS part of the pipeline.

6. Results & Evaluation

In this section we evaluate the performance characteristics of our
BVH clustering approach when using different parameters, i.e. vol-
ume, transfer function, clustering, leaf size, brick size, etc. We ad-
ditionally compare our approach to our implementation of Sparse-
Leap [HAB*18]. We have implemented this to the best of our
ability using the pseudo-code provided and observed much of the
same characteristics has shown in their evaluations. We used the
same OpenGL ARB extension ARB_fragment_shader_interlock to
process occupancy geometry in order per-fragment. For linked-
list generation we took inspiration — like [HAB*18] — from
[YHGT10].

While SparseLeap is implemented in OpenGL and our BVH
DVR approach is using OptiX, most of the underlying code for oc-
cupancy information, paging, etc, are common to both, minimising
differences as much as possible and making fair comparisons. We
briefly discuss the underlying sampling method in section 5.3. The
OpenGL SparseLeap implementation and the BVH OptiX imple-
mentation use the exact same underlying implementation and data
for the page table and brick-pool, the only differences being that

D. Ganter & M. Manzke / An Analysis of Region Clustered BVH Volume Rendering on GPU

TF1 Colour TF1 ERT

TF2 Colour TF2 ERT

Figure 3: Examples of the flower dataset used with the two different
transfer functions. Note that the ERT rays are highlighted in red
and are substantially less prevalent in the second transfer function.
Also note that both transfer functions set the exact same amount of
active/inactive regions, thus the only difference is amount of ERT.

SparseLeap uses OpenGL textures and the BVH DVR uses rtBuffer
objects and rtTextureSampler. We time the appropriate sections us-
ing the system clock, starting and stopping a timer before and after
the evaluated stats. For OpenGL, glFinish() is called before starting
the timer and before stopping the timer.

The test system used an Intel Xeon E5-1620 v2 and an Nvidia
GeForce RTX2080 using Ubuntu 18.04. The OptiX SDK was ver-
sion 6.0, OpenGL version was 4.5, using Nvidia driver 418.43.

6.1. Data-sets

To best maintain a level of fair comparisons we use a multitude of
data-sets during experimentation. The primary data-set shown in
the paper is a µCT scan of a flower with a resolution of 10243 8-bit
integers obtained from UZH [UZH]. Examples of this data-set are
shown in figure 3. The beechnut data-set also obtained from UZH
is 10242x1546 16-bit unsigned integer, and although not shown in
any of the images or figures, exhibited similar results to the Flower
data-set. Both of these data-sets obtain a decent level of clustering
while maintaining regions of thin strands that are difficult to cluster.

In contrast we also use a frame from a Supernova simulation pre-
viously obtained from UC Davis. This data is up-scaled from 4323

to 20483 8-bit unsigned integer data. The Supernova with the tested
transfer function exhibited large amounts of cluster-able regions.
An example of this data-set is shown in figure 5. The website for

Figure 4: Depth complexity comparison of a head-on view of the
flower data-set with a leaf size of 163 voxels. See section 6.2 for
explanation of heat-map colour coding, and table 1 for statistics
on the amount of clusters present.

this data-set was no longer available when last checked, but copies
of the data can be supplied on request.

Both the Flower and the Supernova data-sets are chosen to rep-
resent varying degrees of cluster-ability, the percentages of which
can be seen in the ‘% of BActive’ column in 1. However, in ad-
dition to different data-sets, we find it important to emulate the
interactive nature of DVR applications by using different transfer
functions on the same volume. In figure 3 we show two different
transfer functions on the same volume. This is necessary to eval-
uate the impact that large amounts of sub-division leaf nodes has
on depth complexity for both the SparseLeap implementation and
the BVH OptiX DVR, as such TF1 has a high ratio of early-ray-
termination (ERT) relative to rays which actually sample the vol-
ume (rays which enter at least one active leaf). TF2 is quite the
opposite with very little ERT, allowing rays to traverse through the
volume almost entirely. It is important to note that both TF1 and
TF2 exhibit the exact same amount of active leaves in the subdivi-
sion and only differ in opacity accumulation.

6.2. Clustering

In table 1 we show comprehensive statistics about both the leaf
subdivision and clustering statistics of our method. We can see that
for the flower data-set — using both transfer functions — a reduc-
tion to between approximately 40% to 50% of BVH leaf nodes is
achieved. For the Supernova data-set which has much more con-
tiguous space, we see a more substantially reduced complexity to
between 5% and 35% of the original leaf count relative to un-
clustered.

We show visual comparisons of depth complexity both with
and without clustering enabled in figures 4 and 5. The colours
range from blue to red representing a depth complexity of 1 to
MaxDC which is defined as the manhattan distance from one cor-
ner to the opposite corner of the volumes going by bricks, i.e.
numLeaves.x+numLeaves.y+numLeaves.z. Note that none of the
displayed images ever reach a depth complexity of 100% since
there is always a portion of the volume that is skipped and the ex-
periments are mostly run on the horizontal x-plane.

Using the flower data-set we can see in figure 4 that there is an

D. Ganter & M. Manzke / An Analysis of Region Clustered BVH Volume Rendering on GPU

Bsize BTotal BActive (% of BTotal) Tt f BClusters (% of BActive) TCluster
128 512 261 50.98% 0.01ms 139 53.26% 0.05ms
64 4,096 1,126 27.49% 0.08ms 566 50.27% 0.37ms

Flower 32 32,768 4,883 14.90% 0.73ms 2,606 53.37% 1.89ms
16 262,144 22,058 8.41% 1.58ms 10,605 48.08% 17.63ms
8 2,097,152 112,139 5.35% 7.48ms 43,603 38.88% 112.46ms
128 4,096 811 19.80% 0.03ms 268 33.05% 0.08ms
64 32,768 5,324 16.25% 0.14ms 1,043 19.59% 1.67ms

Supernova 32 262,144 4,883 14.63% 0.60ms 5,232 13.64% 13.00ms
16 2,097,152 290,864 13.87% 5.98ms 23,947 8.23% 107.33ms
8 16,777,216 2,262,811 13.49% 27.68ms 112,801 4.98% 1090.02ms

Table 1: Statistics on subdivision leaf clustering for different leaf-sizes (‘Bsize’) showing the total number of subdivision leaves (‘BTotal’),
the number of active leaves (‘BActive’) for the given transfer function and that number as a percentage of the total number of leaves (‘% of
BTotal’), the time taken to test all leaves against the transfer function (‘Tt f ’), the amount of clustered leaves (‘BClusters’), also represented as
a percentage of the amount of active leaves (‘% of BActive’) and the amount of time taken to cluster the leaves (‘TCluster’).

Figure 5: Depth complexity comparison of a head-on view of the
supernova data-set with a leaf size of 323 voxels. This shows the fi-
nal render (top-left), the ERT (top-right), the depth complexity with
clustering off (bottom-left) and on (bottom-right).

observable reduction in depth complexity straight through the mid-
dle of the volume. There is however a substantial amount of non
cluster-able regions — or regions that were already relatively low
in depth-complexity — around the fringes of the volume. Looking
at figure 3 which shows a side-view of the volume, we can see that
the strands of active regions are thin enough to make it difficult
to cluster. On the other hand, using something like the Supernova
data-set shown in figure 5 which exhibits large amounts of adjacent
subdivision leaves, we can see a considerable reduction of depth
complexity throughout the volume. These claims are backed up by
statistics in table 1 and the render performance benefits can be ob-
served in figure 6.

6.3. BVH Build Times

BVH build times have been a major factor in the lack of adoption
for DVR. To evaluate the actual implications, we vary the transfer
function to increase the amount of active leaves in the subdivision.
In figure 7 we show the build times with a varying active leaf rate of
approximately 8% to 100% for a leaf-size of 163 using the flower
data-set. Note that this time includes the time it takes for creating
AABB information and uploading to the GPU. We can see that
there is a relatively linear increase in time, but remains well below
20ms for this data-set.

This only tells part of the story however. In table 1 we show data
relating to clustering time for different configurations. We can see
that, for the most part, the time taken to cluster a volume dwarfs
the time taken for the BVH build. It is important to note however,
that our clustering implementation is naive since it is a proof-of-
concept for leaf complexity in BVH building and ray traversal, and
can potentially be improved upon substantially.

We also compare the BVH build times to the occupancy geom-
etry generation step of SparseLeap [HAB*18]. We observed that
both the occupancy tree update time (which included geometry
emission) and the occupancy geometry render order time were rel-
atively consistent at 16ms (shown in figure 7) and 2ms respectively.

6.4. BVH Traversal Costs

An important part of evaluation is BVH traversal performance for
DVR using OptiX. We can roughly estimate the portion that be-
longs to OptiX based on the difference of rendering a volume with
and without sampling the data while varying the brick size. This
was achieved by stubbing the sampling code in the first-hit OptiX
program by use of a run-time flag. In figure 8 we show the results
of this experiment. As expected, we can see the rising cost of BVH
traversal (‘Not Sampled’) as the brick size decreases and the sub-
division count increases. We can see this has an impact on the end
render time (‘Sampled’). Interestingly, and again as expected, re-
moving the cost of BVH traversal from the overall render time, the
difference reveals the actual cost of sampling the volume, which
has a mostly reducing trajectory. This justifies using smaller bricks

D. Ganter & M. Manzke / An Analysis of Region Clustered BVH Volume Rendering on GPU

 0

 5

 10

 15

 20

Flower16 TF1 Flower32 TF1 Flower64 TF1

Ti
m

e
 (

m
s)

 0

 20

 40

 60

 80

 100

 120

Supernova 16 Supernova 32 Supernova 64

No Clustering
Clustering

Figure 6: Difference in render times with clustering off/on for differing subdivision leaf sizes of 163, 323 and 643 for the Flower data-set
using transfer function 1 (‘TF1’) shown in figure 3 and the Supernova data-set shown in 5. Massive stability in render times can be seen by
using clustering for the Supernova. In the Flower case, we see improvements even for the mostly opaque transfer function. This is important
so as BVH traversal complexity is reduced in the event many leaf nodes are not needed for rendering, rather than having a deep hierarchy
where most of the leaves aren’t even touched.

 0

 5

 10

 15

 20

0 150K 300K

Ti
m

e
 (

m
s)

Active Leaves

SparseLeap Tree Update
BVH Build Time (RTX)

BVH Build Time (RTX Off)
AABB Info Build

Common TF Test Time

Figure 7: Comparison of times for different renderers and config-
urations with varying amount of active subdivision leaves. Both
the SparseLeap and OptiX DVR implementations share the same
transfer-function leaf-test code. Because the SparseLeap tree size
doesn’t change, the update time remains almost constant. We show
results for the BVH build time with and without RTX enabled which
includes the time taken to generate and upload the AABB bounds
(‘AABB Info Build’) and thus should be offset by this value to find
the actual build time.

for tighter ESS granularity, but indicates the requirement for a re-
duction in data-structure traversal complexity. For this reason that
a clustering approach is proposed.

6.5. With & Without RTX

A core evaluation that we performed is the actual benefit of the new
RT cores hardware. Starting with the first step in the pipeline, we
look at BVH build times. In figure 7 we show the build times — in-
cluding AABB information creation and upload — with and with-
out RTX. Interestingly, although we are not aware of any advertised
hardware for BVH construction, there is a substantial performance

 0

 5

 10

 15

 20

 25

 30

 16 24 32 40 48 56 64

Ti
m

e
 (

m
s)

Brick Size

Sampled
Not Sampled

Figure 8: Average render times Flower data-set using TF2 (no
ERT) with sampling on and off to evaluate the portion of render-
ing responsible for BVH traversal and scheduling in OptiX.

increase observed — dropping from approximately 10ms to less
than 5ms when removing AABB information build time from the
respective BVH build times.

The major part of the pipeline that we expected RTX to show
massive performance benefit is during rendering. In figure 9 we
show the difference in just traversal times to highlight any im-
provement between configurations. We can see substantial benefits
to using the RT core hardware acceleration, especially as the leaf
size reduces, improving ESS granularity but maintaining a steady
level of performance.

6.6. Render Times

Finally, and potentially most importantly, we evaluate the actual
performance of DVR for both our clustered BVH approach and our
implementation of SparseLeap. In figure 10 we show render-time
results using both TF1 and TF2 to highlight the differences between
performance when ERT is a prevalent feature during ray traversal.
In all of these tests, the underlying sampling method used a brick
pool with a brick size of 323, which we find to be the most perfor-

D. Ganter & M. Manzke / An Analysis of Region Clustered BVH Volume Rendering on GPU

 0

 5

 10

 15

 20

 25

 30

 16 24 32 40 48 56 64

Ti
m

e
 (

m
s)

Brick Size

RTX On
RTX Off

Figure 9: Difference in BVH traversal times with RTX off/on for
differing subdivision leaf sizes for the Flower data-set. Volume
sampling is stubbed to get an estimation of just BVH performance.
Clustering is not enabled for this experiment to force a larger
amount of leaf nodes. See table 1 for indicative leaf counts, This
shows clear benefit for using the RT core hardware when spatially
subdividing a volume.

mant in this case for both approaches. The results were obtained by
performing 50 full rotations in 360 steps with the volume filling as
much of the view-port without being cut off, timing the appropriate
stages using the method outlined at the beginning of this section.
Examples of frame 90 — a side-on view of the volume — can be
seen in figure 3.

In almost all cases we see a substantial performance benefit using
the clustered BVH approach in terms of average render times. The
exception to this rule is when there is little ERT and the leaf size is
relatively large. In the case of SparseLeap we can see that a small
leaf-size can sometimes be a hindrance during rendering. A smaller
leaf-size in general means a finer level of granularity, but for a
relatively fragmented volume such as the flower, segment counts
can become quite substantial creating extra work for the fragment
shader, showing there is a balance to strike.

In comparison, we see that the average render performance for
clustered BVH DVR is significantly better in most cases than the
best-case SparseLeap configuration. For the flower volume using
TF1 we observe an almost 40% improvement in render times, a
statistic echoed using TF2. Another important quality that is of-
ten overlooked is render performance stability. In figure 10 we can
see that while there is deviation of minimum and maximum render
times from the average, it is quite stable relative to SparseLeap. we
consider this an important quality in DVR when exploring a vol-
ume.

7. Conclusions & Future Work

We have shown that BVHs are an extremely viable candidate for
DVR on modern GPUs that implement new hardware for ray-
tracing, giving us tight-wrapping empty-space-skipping structures
with little effort. We have presented a method of leaf-clustering to
help ray-traversal performance during rendering and prove the ben-
efits in terms of both depth-complexity and traversal times. We note
that while clustering improves the aforementioned stages the actual

clustering times can become a bottleneck for transfer function up-
date times. Furthermore, since the 3DSAT needs to be the same di-
mensions as the amount of subdivisions, it can become quite mem-
ory intensive with massive volumes or fine grained subdivisions.
It is necessary to keep in mind that this is a relatively naive clus-
tering implementation used as a proof-of-concept to demonstrate a
method of reducing leaf complexity for BVHs. Their performance
may be improved with more efficient algorithms, potentially using
fast convolution kernels and using the massive parallelism on the
GPU. It is important to re-iterate that one of the main reasons BVHs
were previously avoided for interactive DVR was build-times. We
have shown that these build times — including the necessary steps
to facilitate the build — are highly interactive and should not be
considered a limiting factor.

While all of this work focuses on the ESS stage of DVR, we of
course observed that the main bottleneck in volume rendering is
I/O, both in terms of loading data from disk/network and then up-
loading to the GPU. While our work does not consider this field
relevant to it’s contributions, it is nonetheless a vital consideration
for any large-scale DVR. It is also important to reiterate that — in
our implementation — there is a separation between ESS informa-
tion and the actual volume data insofar that the sampling and the
space-skipping do not necessarily need to share the same data, a
trait also present in [HBJP12; HAB*18].

The code for this work has been made publicly available at
github.com/ganterd/optixdvr, and we encourage others to use, build
upon and compare against the implementation.

Acknowledgements

We acknowledge the Computer-Assisted Paleoanthropology group
and the Visualization and MultiMedia Lab at University of Zurich
(UZH) for the acquisition of the µCT data-sets. The authors wish to
thank Seán Martin and Seán Bruton for their valuable input. This
research has been conducted with the financial support of Science
Foundation Ireland (SFI) under the Grant Number 13/IA/1895.

References
[BHP15] BEYER, JOHANNA, HADWIGER, MARKUS, and PFISTER,

HANSPETER. “State-of-the-Art in GPU-Based Large-Scale Volume Vi-
sualization”. Computer Graphics Forum 34.8 (2015), 13–37. ISSN: 1467-
8659. DOI: 10.1111/cgf.12605 2.

[CNLE09] CRASSIN, CYRIL, NEYRET, FABRICE, LEFEBVRE, SYLVAIN,
and EISEMANN, ELMAR. “GigaVoxels: Ray-guided Streaming for Effi-
cient and Detailed Voxel Rendering”. Proceedings of the 2009 sympo-
sium on Interactive 3D graphics and games - I3D ’09. I3D ’09. New
York, NY, USA: ACM, 2009, 15. ISBN: 9781605584294. DOI: 10 .
1145/1507149.1507152 2.

[Cro84] CROW, FRANKLIN C. “Summed-area tables for texture map-
ping”. ACM SIGGRAPH Computer Graphics 18.3 (1984), 207–212.
ISSN: 00978930. DOI: 10.1145/964965.808600 3.

[DTM18] DOYLE, MICHAEL J., TUOHY, CIARAN, and MANZKE,
MICHAEL. “Evaluation of a BVH construction accelerator architecture
for high-quality visualization”. IEEE Transactions on Multi-Scale Com-
puting Systems 4.1 (Jan. 2018), 83–94. ISSN: 23327766. DOI: 10 .
1109/TMSCS.2017.2695338 2.

http://github.com/ganterd/optixdvr
https://doi.org/10.1111/cgf.12605
https://doi.org/10.1145/1507149.1507152
https://doi.org/10.1145/1507149.1507152
https://doi.org/10.1145/964965.808600
https://doi.org/10.1109/TMSCS.2017.2695338
https://doi.org/10.1109/TMSCS.2017.2695338

D. Ganter & M. Manzke / An Analysis of Region Clustered BVH Volume Rendering on GPU

 0

 5

 10

 15

 20

 25

 30

B16 TF1 B32 TF1 B64 TF1 B16 TF2 B32 TF2 B64 TF2

Ti
m

e
 (

m
s)

SparseLeap
Optix Cluster

Figure 10: Render times comparison of SparseLeap[HAB*18] to our approach using the Flower data-set with different leaf sizes (‘Bxx’)
and the two different transfer functions (‘TF1’ and ‘TF2’). The underlying sampling layer used a brick size of 323. Note that the SparseLeap
times do not include the geometry rasterisation step required for when the camera moves.

[EHK*06] ENGEL, KLAUS, HADWIGER, MARKUS, KNISS, JOE M., et al.
Real-time volume graphics. CRC Press, 2006, 29–es. ISBN: 0111456789.
DOI: 10 . 1145 / 1103900 . 1103929. arXiv: arXiv : 1011 .
1669v3 2.

[FK10] FOGAL, THOMAS and KRÜGER, JENS. “Tuvok - An Architecture
for Large Scale Volume Rendering”. 15th Vision, Modeling and Visu-
alization Workshop ’10. 2010, 139–146. ISBN: 9783905673791. DOI:
10.2312/PE/VMV/VMV10/139-146 2.

[FSK13] FOGAL, THOMAS, SCHIEWE, ALEXANDER, and KRUGER,
JENS. “An analysis of scalable GPU-based ray-guided volume render-
ing”. IEEE Symposium on Large Data Analysis and Visualization 2013,
LDAV 2013 - Proceedings. IEEE, Oct. 2013, 43–51. ISBN: 978-1-4799-
1659-7. DOI: 10.1109/LDAV.2013.6675157 2.

[HAB*18] HADWIGER, MARKUS, AL-AWAMI, ALI K., BEYER, JO-
HANNA, et al. “SparseLeap: Efficient Empty Space Skipping for Large-
Scale Volume Rendering”. IEEE Transactions on Visualization and
Computer Graphics 24.1 (2018), 974–983. ISSN: 10772626. DOI: 10.
1109/TVCG.2017.2744238 2–4, 6, 8, 9.

[HBJP12] HADWIGER, MARKUS, BEYER, JOHANNA, JEONG, WON KI,
and PFISTER, HANSPETER. “Interactive volume exploration of petascale
microscopy data streams using a visualization-driven virtual memory
approach”. IEEE Transactions on Visualization and Computer Graph-
ics 18.12 (Dec. 2012), 2285–2294. ISSN: 10772626. DOI: 10.1109/
TVCG.2012.240 2–4, 8.

[KTW*11] KNOLL, AARON, THELEN, SEBASTIAN, WALD, INGO, et al.
“Full-resolution interactive CPU volume rendering with coherent BVH
traversal”. IEEE Pacific Visualization Symposium 2011, PacificVis 2011
- Proceedings. IEEE. 2011, 3–10. ISBN: 9781612849324. DOI: 10 .
1109/PACIFICVIS.2011.5742355 2.

[KWN*13] KNOLL, AARON, WALD, INGO, NAVRÁTIL, PAUL A., et al.
“Ray tracing and volume rendering large molecular data on multi-
core and many-core architectures”. Proceedings of the 8th International
Workshop on Ultrascale Visualization - UltraVis ’13. New York, New
York, USA: ACM Press, 2013, 1–8. ISBN: 9781450325004. DOI: 10.
1145/2535571.2535594 2.

[KWN*14] KNOLL, AARON, WALD, INGO, NAVRATIL, PAUL, et al.
“RBF volume ray casting on multicore and manycore CPUs”. Computer
Graphics Forum 33.3 (June 2014), 71–80. ISSN: 14678659. DOI: 10.
1111/cgf.12363 2.

[LBG*16] LABSCHUTZ, MATTHIAS, BRUCKNER, STEFAN, GROLLER,
M. EDUARD, et al. “JiTTree: A Just-in-Time Compiled Sparse GPU
Volume Data Structure”. IEEE Transactions on Visualization and Com-
puter Graphics 22.1 (Jan. 2016), 1025–1034. ISSN: 1077-2626. DOI:
10.1109/TVCG.2015.2467331 2.

[LCDP13] LIU, BAOQUAN, CLAPWORTHY, GORDON J., DONG, FENG,
and PRAKASH, EDMOND C. “Octree rasterization: Accelerating high-
quality out-of-core GPU volume rendering”. IEEE Transactions on Vi-
sualization and Computer Graphics 19.10 (2013), 1732–1745. ISSN:
10772626. DOI: 10.1109/TVCG.2012.151 2.

[Lev88] LEVOY, MARC. “Display of Surfaces from Volume Data”. IEEE
Computer Graphics and Applications 8.3 (May 1988), 29–37. ISSN:
02721716. DOI: 10.1109/38.511 2.

[LSL*13] LEE, WON-JONG, SHIN, YOUNGSAM, LEE, JAEDON, et al.
“SGRT: a mobile GPU architecture for real-time ray tracing”. Pro-
ceedings of the 5th High-Performance Graphics Conference on - HPG
’13. New York, New York, USA: ACM Press, 2013, 109–119. ISBN:
9781450321358. DOI: 10.1145/2492045.2492057 2.

[PBD*10] PARKER, STEVEN G., BIGLER, JAMES, DIETRICH, AN-
DREAS, et al. “OptiX: A General Purpose Ray Tracing Engine”. ACM
Transactions on Graphics 29.4 (2010), 1. ISSN: 07300301. DOI: 10.
1145/1833351.1778803 2.

[RV06] RUIJTERS, DANIEL and VILANOVA, ANNA. “Optimizing GPU
Volume Rendering”. Winter School of Computer Graphics (WSCG) 14
(2006) 2.

[UZH] UZH. Research Datasets. https://www.ifi.uzh.ch/en/
vmml/research/datasets.html. Accessed: 2019-01-05 5.

[WJA*17] WALD, I, JOHNSON, G. P., AMSTUTZ, J, et al. “OSPRay - A
CPU Ray Tracing Framework for Scientific Visualization”. IEEE Trans-
actions on Visualization and Computer Graphics 23.1 (Jan. 2017), 931–
940. ISSN: 10772626. DOI: 10.1109/TVCG.2016.2599041 2.

[WUP*18] WU, QI, USHER, WILL, PETRUZZA, STEVE, et al. “VisIt-
OSPRay : Toward an Exascale Volume Visualization System”. Euro-
graphics Symposium on Parallel Graphics and Visualization Vi (2018).
DOI: 10.2312/pgv.20181091 2.

[YHGT10] YANG, JASON C., HENSLEY, JUSTIN, GRÜN, HOLGER, and
THIBIEROZ, NICOLAS. “Real-Time Concurrent Linked List Construc-
tion on the GPU”. Computer Graphics Forum 29.4 (Aug. 2010), 1297–
1304. ISSN: 01677055. DOI: 10.1111/j.1467- 8659.2010.
01725.x 4.

https://doi.org/10.1145/1103900.1103929
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.2312/PE/VMV/VMV10/139-146
https://doi.org/10.1109/LDAV.2013.6675157
https://doi.org/10.1109/TVCG.2017.2744238
https://doi.org/10.1109/TVCG.2017.2744238
https://doi.org/10.1109/TVCG.2012.240
https://doi.org/10.1109/TVCG.2012.240
https://doi.org/10.1109/PACIFICVIS.2011.5742355
https://doi.org/10.1109/PACIFICVIS.2011.5742355
https://doi.org/10.1145/2535571.2535594
https://doi.org/10.1145/2535571.2535594
https://doi.org/10.1111/cgf.12363
https://doi.org/10.1111/cgf.12363
https://doi.org/10.1109/TVCG.2015.2467331
https://doi.org/10.1109/TVCG.2012.151
https://doi.org/10.1109/38.511
https://doi.org/10.1145/2492045.2492057
https://doi.org/10.1145/1833351.1778803
https://doi.org/10.1145/1833351.1778803
https://www.ifi.uzh.ch/en/vmml/research/datasets.html
https://www.ifi.uzh.ch/en/vmml/research/datasets.html
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.2312/pgv.20181091
https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.1111/j.1467-8659.2010.01725.x

