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Light-Field DVR on GPU for Streaming Time-Varying Data
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Figure 1: An 8x1 sub-section from a light-field of 5122 pixel sub-images of a supernova volume dataset. [Blo07]

Abstract
Direct Volume Rendering (DVR) of volume data can be a memory intensive task in terms of footprint and cache-coherency. Ray-
guided methods may not be the best option to interactively render to light-fields due to feedback loops and sporadic sampling,
and pre-computation can rule out time-varying data. We present a pipelined approach to schedule the rendering of sub-regions
of streaming time-varying volume data while minimising intermediate sub-buffers needed, sharing the work load between CPU
and GPU. We show there is significant advantage to using such an approach.
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1. Introduction

For many streaming volume data applications such as 4D MRI, 4D
ultrasound or CFD simulations, direct volume rendering (DVR) is
a prevalent method. It is desirable for users to view these datasets in
real-time while changing the view-point or transfer-function. Par-
allax via light-field (LF) displays can give a greater understand-
ing of the data [RZDdW14], and further perceptual enhancement
and eye-strain prevention can be achieved by near-eye light-field
displays [LL13]. When rendering to a single-view, rays are gen-
erally closely coupled and sample data with good spatial locality.
This can change when rendering to a LF display when rays from
different views sample more sporadically. Work has been done on
displaying volume data to a LF display [IGM10, AGIG∗08] which
work well when data is static or updates without a latency require-
ment [HBJP12], but are not ideally suited for time-varying (TV)
data. TV DVR has also been researched [SZ03, ZEP09, NCD15]
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but few papers focus on rendering to a LF display. Approaches that
do [Rui09,RZDdW14,BVL∗16] are either quite simple or resort to
down-sampled data or image-based techniques.

We present a method to make efficient use of existing GPUs to
schedule the rendering of regions of streaming TV volumes to all
views of a LF in one pass, exploiting the on-chip L2 cache. We
focus on the performance of LF DVR at practical screen and data
resolutions and dimensions, projecting sub-volumes that fit in the
L2 cache to all views before progressing to the next sub-volume,
enhancing cache coherency. We exploit sub-volumes close in ren-
der order to minimise the amount of intermediate sub-buffers, re-
ducing the complexity and memory-footprint of standard sort-last
rendering. We present this as a pipeline for splitting the view-
dependent working-set determination and rendering between the
CPU and GPU. We evaluate our method, showing significant per-
formance gain in the render kernel in comparison to octree-based
empty-space-skipping as a result of improved L2 cache utilisation.

2. Background & Related Work

Using DVR [Lev88] a volume is rendered by integrating over
rays, accumulating colour and opacity, generally discretised as
a Riemann sum. It is common to divide the volume into bricks
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and use a data-structure for a reduced working-set to be deter-
mined and efficiently traversed during rendering [CNLE09,IGM10,
KTW∗11, FSK13]. Approaches can use the CPU as the sole ren-
derer [Kni00, KTW∗11], or use a ray-guided feedback loop be-
tween the CPU and GPU [GMIG08, FSK13, HBJP12, HAAB∗18].
This feedback loop prevents the pipe-lining of streaming data. Liu
et al. [LCDP13] note that the CPU is a better candidate for tree
traversal and thus, determining the working set. These methods
require pre-processing making them unsuitable for TV data, and
do not take explicit advantage of cache-coherency. TV data adds
pressure to memory storage and bandwidth, and approaches ei-
ther simplistically transfer the full volume per-frame [ZEP09], use
dynamic-resolution [Rui09, RZDdW14] or use brick extrapolation
[NCD15], introducing artefacts. As a side note, we currently con-
sider compression [BGIG∗14] to be a stage prior to our pipeline,
thus out of scope. Sort-last (SL) approaches render bricks out-of-
order or in parallel to sub-buffers, compositing in-order to the fi-
nal image [Hsu93,MPHK94], presenting a trade-off of concurrency
versus memory footprint and complexity. Samanta et al. [SFLS00]
presented a hybrid sort-first / sort-last polygonal rendering ap-
proach for a cluster. Our approach draws inspiration and applies
a similar method to GPU DVR.

The light-field (LF) was introduced in [LH96] as an efficient
image-based rendering (IBR) method. A LF aims to capture all
rays passing through a given space, commonly parametrised us-
ing two parallel planes, discretised as a collection of sub-aperture
images arranged on a 2D grid. We choose to use this parametri-
sation as it can be used to interface multiple rendering meth-
ods [LH96, IMG00] and displays [WLHR12, HLW15]. Current LF
DVR methods generally use the full volume [Rui09, RZDdW14,
KPE∗12, BVL∗16] and are either application oriented or use IBR
techniques. Ray-guided approaches have also been proposed for
rendering large static volumes to LF displays [IGM10], but suffer
the same set-backs as previously mentioned.

A shared 2MB L2 cache is shared by the streaming-
multiprocessors in Nvidia’s Pascal architectures, which we exploit
in our approach by enhancing spatio-temporal sampling coherence.
Concurrency is limited by registers or memory usage per-thread,
and while it is easy to consider the DVR as a set of simultaneously
progressing rays, in reality the volume is rendered in thread blocks.
This means rays in one tile may exit the volume before the next set
of thread blocks begins, leading to the L2 cache being thrashed be-
fore the next set of rays start. Our approach limits render kernels to
complete a volume brick before progressing, achieving enhanced
cache coherency.

3. Pipelined Brick-Based LFDVR

The core concepts of our method are the following: Projecting one
sub-L2-cache-sized brick to all LF sub-aperture images before pro-
gressing to the next brick for more cache-efficient sampling access
by forcing all GPU thread blocks to remain in the same volume
region. Since the render order of bricks may be different for each
sub-aperture image, each brick renders to an intermediate buffer
(sub-buffer). We exploit bricks that can use the same sub-buffers as
their neighbours to reduce memory footprint and compositing com-

plexity. We pipeline asynchronous tasks on the CPU and the GPU.
The pipeline is structured as the following steps:

1. CPU Empty-space-skipping (ESS) information generation.
2. CPU Per-view view-dependent render-order list determination.
3. CPU Per-view brick sub-buffer amalgamation (minimisation).
4. Both Working-set data transfer.
5. GPU Per-brick render kernels.
6. GPU Sub-buffer compositing kernels to final image.

Simple ESS data-structure generation has been covered in the
literature extensively, and the rendering method itself is relatively
standard, thus we only expand upon view-list generation and the
sub-buffer minimisation.

View-List Generation: To generate a per-view render list we
first determine the overall order which bricks will be scheduled.
We order these by distance from the camera plane centre point.
Bricks that are considered empty are not placed on this list, thus
are now excluded. We then generate the per-view view-dependent
render lists in parallel on the CPU. These lists represent the order in
which bricks need to be rendered for a particular view to produce
the correct result. These lists are determined by using a flood-fill
algorithm starting from the closest brick in a view frustum.

Sub-Buffer Minimisation: In algorithm 1 we outline our
method to minimise the amount of sub-buffers. We exploit the fact
that neighbouring bricks will be close enough in the overall render
order that they may share a buffer maintaining the front-to-back
compositing order. The algorithm loops through all bricks for a
given view. For each brick that does not have an assigned buffer (all
of them in the beginning) a new buffer is created with the dimen-
sions of the brick’s projection bounds. We then recursively traverse
the forward descendants of the brick (i.e bricks which are further
from the view-point by manhattan distance) testing for existing as-
signed buffers. If there is no assigned buffer for a descendant and it
is later in the render order, it is assigned the current buffer, and the
buffer dimensions are expanded to accommodate the descendant’s
projection bounds. With all sub-buffer information generated we
now allocate the space for these sub-buffers on the GPU.

Algorithm 1 Sub-buffer minimisation algorithm.
function MINIMISEBUFFERSFORVIEW(View v)

List brickList = view.brickListInOrder
for all Brick b in brickList do

if !b.HasBu f f erForView(v) then
Buffer s = new Buffer();
RecursiveAddBuffer(b, v, s);

function RECURSIVEADDBUFFER(Brick b, View v, Buffer s)
if b.HasBu f f erForView(v) then

return;
b.Bu f f erForView(v) = s;
s.AccommodateBrickPro jectionBounds(b);
for all Brick n in b. f orwardNeighbours do

if n.renderIndex > b.renderIndex then
RecursiveAddBuffer(n, v, s);

Compositing Kernel: In algorithm 1 we generated a list of sub-
buffers, which we can trivially order from front-to-back. Using this
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list we divide the final-image screen-space into tiles, which we re-
fer to as screen-tiles. Each of these screen-tiles is the work item
of a CUDA thread block. Each thread block traverses the ordered
list from front-to-back, testing each sub-buffer in the ordered list
for contribution to it’s target screen-tile. If it does, the brick-tile is
composited to the final image, otherwise it is skipped. This method
ensures that a correct final image is composited.

4. Implementation & Evaluation

Our system used an Nvidia GTX1080 GPU and Intel Xeon E5-
1620 v3 CPU. Experiments involved a LF camera plane doing a
full rotation in 50 steps around a volume. Results presented were
obtained using a 5123 floating-point (FP32) volume of a super-
nova [Blo07]. Similar results excluded for brevity were also ob-
tained using datasets exceeding the L2 cache size. We expect bricks
that have a data size of sub-L2 size (2MB) to perform best, meaning
approximately 803 voxels for FP32 data. Taking into account other
access requirements for other rendering kernels, we estimate brick
sizes of sub 723 voxels to have superior cache utilisation. Con-
sidering computational overhead and complexity of small bricks,
we further focus our expected performant range to between 323

to 723 voxels. Our experiments prove that this is the case. Since
our application area is relatively unresearched we have little to
compare against. Ray-guided approaches require too much off-line
pre-processing for streaming volumes, and multi-view streaming
dataset DVR approaches are either quite simple or introduce arte-
facts via IBR techniques. We compromise by implementing both a
naive ray-caster and an ESS octree ray-caster as comparisons.

View-Count, Brick Size & Target Resolution: We vary the
brick size from 323 up to 5123, and the LF view-count from 1
view to 322 views, timing the render kernels of the ray-casters in-
dependently. Note that the view-count is a sub-division of the target
screen resolution. The volume is also rendered with shading, intro-
ducing more GPU computation and intensity on the cache. Figure 2
shows the results at a target resolution of 4K2. For the expected per-
formant range of brick sizes our approach outperforms octree ESS
as much as x2. While the graphs omit view-counts 1, 22, 42 for
brevity, we still discuss the results: While our approach performs
well in a many-view small-brick scenario, smaller view-counts and
larger brick sizes reveal a computational overhead of our approach
and we no-longer gain temporal-locality advantage. We also exam-
ined the effect of changing the target screen-buffer resolution pa-
rameter between 1K2, 2K2 and 4K2 for all view counts with vary-
ing brick sizes. We observed that for a relatively small resolution
size of 1K2 our approach slightly under-performs in relation to the
ESS approach due to overhead, with this drop exaggerated with a
smaller than 323 brick size. However, with a brick-size of approxi-
mately 643 we outperform ESS regardless of resolution.

Render List, Buffer Minimisation & Compositing: Timing
the individual components of our pipeline, we observed that the
sections overlap well without the CPU becoming the bottleneck in
most cases. The exception to this is when the brick size drops to
about 323, when the computational overhead on the CPU rises dra-
matically, as seen in figure 3. This, coupled with the overhead on
the GPU, is reason to keep brick-sizes in our approach in the sweet-
spot of approximately 643 for FP32 data.

L2 Cache Statistics & Scalability: To confirm our base assump-
tion of better utilisation of the GPU’s L2 cache, we used the pro-
filer ‘nvprof’ to query the metric ‘l2_tex_hit_rate’. While we at-
tempted this with a 4K2 screen-buffer, nvprof reported metric over-
flow errors. Compromising, we profiled with a 2K2 screen-buffer
with 322 views and a brick size of 643 FP32 data, testing the naive,
octree ESS, and our brick-based ray-casters. We observed a sub-
stantial hit-rate improvement from an ~50% hit rate for the octree
ray-caster versus naive, to an ~87% hit-rate for our brick-based ray-
caster. In addition to the GTX1080, we also tested rendering per-
formance a Quadro K2200, observing the same performance gain
for performant brick sizes, showing that our approach scales with
shader cores.

5. Conclusion & Future Work

We have presented an approach in the relatively untapped area of
LF DVR of streaming TV data. We have shown that by forcing
increased spatio-temporal sampling we benefit substantially when
rendering streaming TV volumes to a LF. By limiting regions of
the volume to a certain size and using them only once, we can ex-
ploit temporal-coherency in the shared L2 cache on the GPU and
gain a performance increase of up to 2x in contrast to an octree
ESS approach when multiple views are presented. Our approach
is compatible with streaming TV data without need for extensive
pre-processing. In the future, we believe that we can further ex-
ploit frame-to-frame coherency both for view-list generation and
memory allocation, perhaps leveraging light-weight easy-to-update
data-structures to accelerate the working-set determination.
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Figure 2: Render kernel times for multiple configurations of view count and brick size for a target resolution of 4K2 rendering a 5123

floating-point volume with and without shading on the GTX 1080. We see a performance gain when brick sizes drop below the L2 size.
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Figure 3: Individual component timings for rendering without
shading to a 4K2 buffer of 322 views. Render and compositing ker-
nels are stacked as they are sequential. This further confirms our
sweet-spot to be a brick-size of approximately 643 for FP32 data.
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